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Abstract – 
Management of environmental hazards in 

underground mining and construction sites has 
always been a challenging task for project managers 
and site engineers. Poor ventilation, the production of 
hazardous gases, dust, and considerable heat and 
humidity are some of the inherent characteristics of 
these ecosystems. Most conventional underground 
risk management methods are static and overly 
simplistic, making it almost impossible to predict and 
control these complex hazards. This paper aims to 
develop an online safety risk management system for 
underground mining and construction environments 
that enables dynamic and remote monitoring, 
analysis, and control of safety risks in underground 
space. The proposed system benefits from an 
automated combination of Internet of Things (IoT) 
wireless sensors as an environmental perception layer 
and Bayesian networks (BNs) as a powerful risk 
modelling engine. Using an open-source dataset 
collected in a real underground coal mine, a proof-of-
concept example is presented to demonstrate the 
applicability of the proposed system. The proposed 
system will enable real-time and remote monitoring of 
underground ecosystems and enhance worker safety 
upon implementation. 
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1 Introduction 
Recent years have seen a considerable amount of 

volatility in the international economy. Aside from 
political and economic instability, the mining and 
construction industries are also facing decreasing 
productivity, skills shortages, and social and 
environmental concerns [1]. The rapid exhaustion of 
near-surface coal seams and the growing demand for 
mineral resources has led underground mining activities 

to move deeper into the earth to extract coal deposits. 
Consequently, the environmental condition of mines 
located at greater depths deteriorates due to poor 
ventilation and the production of hazardous gases, dust, 
and a significant amount of heat [2]. Particularly, there 
are many risks associated with underground coal mining, 
including high temperatures, high humidity, and the 
release of destructive gases. Reviews of historical coal 
mine accidents reveal that, despite technological 
advancements, major explosions have been ineffectively 
controlled, and adequate safety measures have failed to 
be implemented [3, 4]. As these risks are complex in 
nature, it is often difficult to predict and control them. It 
is, therefore, imperative to implement innovative 
solutions, best practices, and additional safety 
precautions to overcome these challenges and reap 
substantial economic benefits. 

In many regions worldwide, mining and construction 
companies still use manual methods to assess the risks 
[5]. On the other hand, the more advanced risk 
assessment methods are generally offline and static, 
whereas the risks in underground spaces tend to be 
dynamic [6]. It has been demonstrated that traditional 
methods of analysis are insufficient for quantitative 
evaluation, dynamic control, and uncertainty 
management [7]. Most studies fail to represent the 
dynamic nature of coal mining adequately. Additionally, 
traditional methods cannot examine the non-linear 
relationships between safety data [8]. Due to the high 
risks and high costs associated with the experimental 
analysis of large-scale, complex gas explosions, it is 
impossible to reproduce the large-scale explosion 
evolution process through experimental techniques. The 
Computational Fluid Dynamics (CFD) simulation 
models are also ineffective since they are 
computationally intensive and incapable of incorporating 
dynamic information related to emergency rescues [9]. It 
is common practice in coal mines to have monitoring, 
supervision, and dispatching systems well integrated 
with machinery, devices, and transportation systems. 
Moreover, systems are designed to monitor natural 
hazards such as methane concentrations, seismicity, and 
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fires. Even so, the collected data is typically used only for 
visualization purposes, when deeper analysis could 
significantly improve many coal mining processes [10]. 

This paper aims to develop an online safety risk 
monitoring and management system for underground 
mining and construction environments that enables real-
time, dynamic, and remote monitoring, analysis, and 
control of safety risks. The study benefits from the 
powerful risk assessment capabilities of Bayesian 
Networks (BNs) to represent the probabilistic and 
complicated nature of safety risks in underground mining 
and construction environments. The online data streams 
of the Internet of Things (IoT) sensors provide input to 
the BNs to enable the real-time monitoring of safety risks. 

2 Background Review 
This section reviews the state-of-the-art methods and 

technologies commonly used in the underground 
environment to manage safety risks.  

2.1 Underground Safety Risk Management 
Risk analysis methods in underground engineering 

can be divided into qualitative and quantitative 
approaches. Among the former are safety testing lists, 
Delphi's technique, interviews, brainstorming, the 
comprehensive fuzzy evaluation method, etc. 
Quantitative approaches include event tree analysis, 
Fault Tree Analysis (FTA), decision trees, support vector 
machines, neural networks, etc. [7]. In the mining 
industry, there has been an increasing interest in risk 
assessment and management, as evidenced by a 
significant number of publications and reports focused on 
these issues. Intensive mining, which results in large-
scale production, is associated with numerous risks 
related to mining operations and the interaction between 
the mining system and the environment. Therefore, it is 
particularly important to conduct research on risk 
analysis, assessment, and management for this sector, 
especially concerning ecological, social, and economic 
factors. Risks should not only be evaluated in terms of 
their professional implications (human factor) but also in 
terms of their strategic implications (environmental 
impact) and operational concerns (safety, equipment, and 
the correctness of the mining process) [11]. 

2.2 Bayesian Network Applications in 
Underground Safety 

Since their first adoption in the late 1990s, BNs have 
been extensively used in risk and reliability assessment, 
accident modelling, diagnostics, and prognostics [6]. 
Tong et al. [9] developed a BN to study the factors 
influencing mine gas explosions. The authors used expert 
knowledge and the Delphi method to determine 

conditional probabilities. According to the authors, BN 
offers several advantages, such as multi-scale node 
variables representing diverse types of influential factors, 
representing uncertain factors during disaster evolution, 
and dynamic probability updates. In addition to 
representing various gas accumulation sources and 
influences, the proposed model would also incorporate 
dynamic explosion impacts on ventilation systems and 
roadways and emergency rescue or intervention 
measures in the process of successive gas explosions. 
The BN is generally established by learning the network's 
structure and the model's parameters based on sufficient 
data. Nevertheless, collecting enough data in some 
research fields may be difficult. Expert knowledge can 
also be used to determine the BN in this case. Despite its 
ability to structure safety and control knowledge, the 
proposed method deals with gas explosion accidents 
passively. It allows the personnel only a minimal time to 
evacuate the site. 

It is also a hot topic in research to learn the structure 
and relationships in BNs from data. BNs were used by Li 
et al. [12] to predict rockburst risks in underground 
spaces. BN was constructed utilizing the Tree augmented 
Naïve Bayes classifier with five parameters, namely the 
buried depth of the tunnel, maximum tangential stress of 
surrounding rock, the uniaxial tensile strength of rock, 
the uniaxial compressive strength of rock, and elastic 
energy index. A dataset of rockburst case histories was 
studied to learn conditional probabilities. The database 
contained 135 case histories, of which 83 were rockburst 
cases, and 52 were non-rockburst cases. In addition to the 
8-fold cross-validation, the model was also validated
with another group of 15 incomplete case histories that
were not used during training. The Bayesian approach
was utilized by Rusek et al. [13] to create a decision
support system for assessing the risk of damage to
prefabricated reinforced concrete buildings exposed to
the industrial environment of mines that can cause
subsidence and tremors. To learn the structure of the BN
from data, the authors used two types of score-based
methods. The Tabu-search algorithm was used as the first
method to search iteratively for potential solutions.
Second, a stochastic search algorithm was used based on
the global optimization algorithm Simulated Annealing.
Analyzes were conducted in R using the catnet and
bnlearn packages. The study data was collected from a
database of 129 prefabricated reinforced concrete
buildings in a copper mining area in Poland. A total of
eight damage intensity indices were used to analyze the
risk of structural and finishing elements being damaged.

Li et al. [14] used a Fuzzy Bayesian Network (FBN) 
to analyze the risk factors of ignition in mines. The expert 
group decision-making method was used to construct risk 
topological and structural models of ignition sources. 
Experts were weighted using a FAHP. The technique can 



be used to calculate the probability of occurrence of 
potential risk events and the probability distribution of 
risk factors using causal reasoning, logical reasoning, and 
sensitivity analysis. Historical data of 215 major gas 
explosion accidents in China from 2000 to 2017 were 
studied to characterize possible accidents. Netica 
software produced by Norsys was used to create the BN. 
Wu et al. [15] presented a Dynamic Bayesian Network 
(DBN) to analyze dynamic road surface damage caused 
by tunnelling over time. In order to construct the DBN 
and its relationships, the authors consulted standards, 
technical reports, expert experience, as well as some 
qualified fault trees. The BN parameters were derived 
from 786 monitoring records regarding tunnel-induced 
road surface settlement and its influential variables. This 
was accomplished by employing the K2 algorithm, a 
well-known algorithm for BN structure learning. The 
dynamic nature was determined by expert estimation. In 
order to demonstrate the feasibility and applicability of 
the proposed system, a case study was conducted for the 
Wuhan Yangtze Metro Tunnel in China. 

2.3 IoT-Enabled Underground Safety 
IoT technology has been applied in a wide array of 

applications to provide solutions to manufacturing and 
transportation [16]. In recent years, IoT has also found its 
way into underground safety applications, helping to 
improve the safety and efficiency of underground 
operations. Zhou and Ding [16] proposed an IoT-based 
hazard energy monitoring system for underground 
construction sites, which involves identifying hazard 
energy, collecting data, and analyzing safety barriers. 
The authors discussed technical, operational, and 
organizational safety barrier systems and compiled a 
checklist of hazard energy sources. IoT technologies 
were employed to gather information about hazardous 
energy on the underground construction site. 

Zhang et al. [17] proposed an Artificial Intelligence 
Internet of Things (AIoT) system for real-time 
monitoring of tunnel construction. The authors 
categorized tunnel information into three groups: tunnel 
geometric factors, geological parameters, and shield 
operational parameters. A database of 12 parameters was 
created, including the above parameters, and measured 
settlement data. IoT sensors were used to capture real-
time shield data parameters. Geometric and geological 
parameters were determined prior to tunnel construction. 
Random Forest models were employed to predict 
operational parameters for successive rings and the 
resulting settlement with high accuracy. 

Dey et al. [18] proposed a hybrid CNN-LSTM model 
to improve the safety and productivity of underground 
coal mines using IoT-enabled sensors. In this study, IoT 
sensors installed in the underground mine transmitted 

data wirelessly to the control room on the ground. The 
CNN-LSTM model extracted spatial and temporal 
features from mine data to predict the miner’s health 
quality index (MHQI) for working faces and gas 
concentration levels in goaf areas. The predicted results 
were displayed in the control room using the graphical 
user interface developed for the digital mine software. 
The proposed prediction model achieved an accuracy of 
89.2% for MHQI and 99.3% for methane prediction. 

3 Methodology 
Figure 1 provides an overview of the proposed 

research framework. There are three interrelated parts to 
the framework. The first part is associated with the 
physical underground mining and construction 
environment. Here, a network of IoT sensors will be 
deployed according to a predesigned layout to collect 
data about environmental factors, such as wind speed, 
temperature, atmospheric pressure, and methane 
concentration. The measurements will be transferred to 
data storage for later use in the data pre-processing 
module. The time-series data will be cleaned and labelled 
according to the requirements of the BN inputs. A BN 
will be created that considers the cascading causes and 
effects of safety accidents in the underground 
environment. Real-time IoT measurements will then be 
fed into the BN. Once the BN is activated, the probability 
distribution of accidents and their consequences will be 
immediately updated. Different parts of the proposed 
framework are explained in the following sections. 

3.1 Environmental Perception 
In the first module of the proposed framework, IoT 

sensors are used to collect real-time environmental data 
on underground space. Different types of sensors are 
utilized for measuring gas concentration levels, wind 
speed, air pressure, temperature, and humidity. Among 
the existing gases in underground mines that can 
potentially increase the risk of safety accidents, such as 
explosions, are methane and oxygen. These sensors must 
be installed in various locations within the underground 
space according to an appropriate deployment strategy to 
provide a comprehensive view of the environmental 
status. The working face, ventilation systems, and tunnels 
are among the critical locations that may require 
continuous environmental monitoring in underground 
environments. The data collection interval can differ 
from seconds to hours based on the type of potential 
hazard being investigated, the specific environmental 
factors being monitored, regulatory requirements, the 
type of underground environment, and the nature of the 
environment. It must be carefully planned in the 
deployment strategy. The collected data must then be 



Figure 1. Proposed online safety risk management framework.

transmitted to data storage for later use in the following 
modules of the proposed framework. Based on industry 
standards and common practices, Wi-Fi is the most 
commonly used technology for data transmission in coal 
mining applications, followed by LTE and 5G [19]. 
Therefore, these wireless technologies should be 
considered when selecting data transmission tools.

3.2 Data Pre-processing
The raw data collected from the IoT sensors are in the 

form of numerical time-series data. In contrast, the input 
data to the BN must typically be in the form of categorical 
data. Therefore, a data cleaning and classification process 
on the raw data is necessary to prepare them for the risk 
assessment module. If the sensors are installed and 
calibrated correctly, the possibility of generating flawed 
data would be minimal. Any missing data or outliers 
should be cleaned in the pre-processing module. Next, 
the clean data must be classified and labelled according 
to the requirements of the Bayesian network. In this step, 
safety experts must define appropriate thresholds for 
categorising the data. For example, when the gas 
concentration in coal mines exceeds the one per cent limit, 
the mining operation will be subject to potential 
interruptions, and panic might be inflicted on the workers
[20]. As a result, the one per cent limit can be defined as 
the threshold for classifying the gas concentration level 

as serious in coal mines. Concentration values below this 
threshold will be labeled as slight concentration, while 
values exceeding this threshold will be classified as 
serious discharge. These discrete categories will then be 
utilized as evidence in the BN model to update the risk of 
other nodes within the network. This logic can also be 
applied to the raw environmental data generated by the 
other types of sensors.

3.3 Risk Assessment
The BN is used in the proposed framework as a robust 

risk assessment tool. BNs are directed acyclic graphs that 
represent probabilistic relationships among variables. A 
BN consists of nodes representing random variables. A 
causal relationship is indicated by an arrow connecting 
two nodes, while the absence of an arrow indicates 
conditional independence between two variables. BN 
modelling begins with identifying the network structure 
to analyze the conditional independence and dependency 
relationships between the input variables. Following the 
definition of the BN structure, it is necessary to describe 
the intensity of the relationship, that is, the conditional 
probability of one variable given another. Assuming that 
a BN has n nodes, the joint probability of the BN's 
random variables would be defined as:
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𝑃(𝑈) = 𝑃(𝑋1, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|𝜋(𝑋𝑖))

𝑛

𝑖=1

 (1) 

Where 𝑋𝑖 denotes the ith random variable, and 𝜋(𝑋𝑖) 
represents the set of parent nodes of  𝑋𝑖. 

In the case of discrete variables, Conditional 
Probability Tables (CPTs) can be used, which determine 
how likely it is that the "end node" will be in one of its 
possible states if the "origin node" will be in one of its 
possible states as well. A BN has the additional feature 
of being updated as new evidence is acquired, a process 
referred to as belief updating [12]. Regarding safety and 
disaster risk management, each node in the BN can 
represent one of the causes or consequences of the 
accident [21]. A similar definition was taken in this 
framework for identifying the structure of the BN. 

After developing the BN, the real-time data pre-
processed in the previous module are fed into it as new 
evidence. The BN then initiates the belief updating 
process to calculate the new probability of the accident 
node, along with the probabilities of all its causes and 
consequences. The result will be an online and real-time 
risk assessment chart for the critical nodes, which can be 
used to assist the decision-makers and safety managers in 
foreseeing the occurrence of any safety accidents, tracing 
the most likely causes of the accident, and taking 
preventive measures to control the accident and its 
consequences. In the next section, a case study is 
conducted to illustrate the details of implementing the 
different steps of the proposed framework. 

4 Case Study 
A proof-of-concept example of a case coal mine in 

Poland was taken to illustrate the applicability of the 
proposed methodology. The following sections explain 

the different parts of the method implementation for the 
proof-of-concept example. 

4.1 Open-source Methane Dataset 
This study simulated live streams of IoT data using 

an open-source dataset from a coal mine in Poland. The 
data were collected from 28 different sensors located at 
various locations within the case coal mine between 2 
March 2014 and 16 June 2014. A total of 9,199,930 
samples are included in this dataset. The measurements 
are taken at intervals of one second. The dataset contains 
no missing values. Kozielski et al. [22] first published the 
dataset, but it was previously used by Ślęzak et al. [10] to 
train a forecasting model to predict near-future methane 
concentration levels in coal mines. Table 1 describes the 
characteristics of the sensors and the other features used 
to collect the open-source dataset.  

4.2 Bayesian Network of Methane Explosion 
Accidents 

A preliminary BN was developed for methane 
explosion accidents in underground coal mines as part of 
the case implementation. The network has eight 
categories of nodes: methane accumulation, ignition, 
mining properties, ventilation, accidents, consequences, 
mitigation measures, and human error. In Figure 2, each 
category is represented by a different color. A review of 
relevant literature was conducted to determine the 
structure of the network and the probability of each root 
node. The conditional probabilities of intermediate nodes 
were estimated using reasonable assumptions and an 
analysis of the general relationship discussed in the 
literature. BNs were developed using BayesFusion's 
GeNIe Modeler [23].

Table 1. Characteristics of sensors used for collecting the open-source methane dataset. 

Category Sensor/Feature Number of 
Sensors/Features 

Climatic condition Anemometer 3 
Temperature 2 

Humidity 2 
Barometer 2 

Methane meter 7 
High-concentration methane meter 1 

The activity of the 
longwall shearer 

Pressure difference on the methane drainage flange 1 
The pressure inside the methane drainage pipeline 1 

The temperature inside the pipeline 1 
Methane delivery 1 

Current meter 5 
Driving direction 1 

Cutter loader speed 1 



Figure 2. Bayesian network of methane explosion accidents in underground coal mines.

4.3 Live Risk Monitoring System 
In the third part of the case study, a simple algorithm 

was developed to link IoT data streams to the Bayesian 
network. It was accomplished by using the Python 
wrapper for the SMILE Engine. The SMILE library is a 
set of C++ classes that manage the Genie Modeler from 
different software [24] via an Application Programming 
Interface (API). In the first step, the size of the dataset 
was reduced by taking the average of measurements 
every 600 seconds as the representative of each ten 
minutes. This resulted in 15,334 samples, each 
representing ten minutes rather than 9 million samples, 
each representing one second. For this purpose, an 
algorithm was developed using the Pandas package in 
Python [25]. Afterwards, a separate algorithm was 
designed to incorporate the pieces of evidence into the 
preliminary BN and calculate the evolution of the 
explosion risk. This was achieved using the SMILE 
wrapper in Python. 

In this case study, the values of only two sensors were 
selected as an example to update the BN in real time. The 
first selected sensor was one of the most critical methane 
meter sensors installed close to the longwall. This 
sensor's values were used as evidence to update the Gas 
discharge from the coal seam node (see Figure 2). The 
methane concentration levels above one per cent were 
considered serious gas discharge, and the levels below 
this threshold were labelled as slight gas discharge [20]. 
The other selected sensor was the closest anemometer to 
the longwall, which was used to update the ventilation 

conditions through the wind speed node (see Figure 2). 
Here, the values above 0.3 m/s were considered adequate 
wind speed, between 0.15 m/s and 0.3 m/s were 
considered ordinary, and those below 0.15 m/s were 
regarded as inadequate wind speed. Figure 3 displays the 
evolution of the explosion risk at each interval. 

Reviewing the open-source dataset, the wind speed in 
the case coal mine was consistently adequate, but the gas 
concentration reached above the one per cent limit during 
the data collection. As seen in Figure 3, the effect of this 
phenomenon was reflected in the evolution diagram of 
the explosion risk. Generally, it can be stated that, in the 
data collection period, the case coal mine was a safe 
environment in terms of the methane explosion. Other 
researchers can conduct a similar analysis to assess the 
safety risks in underground space. 

5 Conclusions 
An online underground safety risk assessment 

framework was proposed in this paper. The framework 
benefits from the mutual benefits of IoT sensors to 
generate real-time environmental data and BNs, as a 
robust risk assessment engine. A case study was 
conducted on an open-source dataset of methane 
concentration in an underground coal mine in Poland. 
The results indicate that the proposed framework is 
capable of assisting safety managers in underground 
mines to monitor the risks of safety accidents on a real-
time basis and take appropriate measures as necessary. 
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Figure 3. The explosion risk evolution diagram.

The proposed framework yields two important 
deliverables that can contribute to the field of safety in 
underground environments. Firstly, developing a 
Bayesian network enables the capture and retention of 
tacit knowledge within the underground environment 
from safety experts. Due to its implicit nature, this 
knowledge is often difficult to transfer to others, but it 
can be effectively captured and applied to improve safety 
practices in underground mining and construction by 
means of the developed BN. Second, implementing the 
framework will lead to the development of an online 
system that allows for real-time monitoring and 
assessment of safety risks in underground environments. 
Through this system, safety measures can be 
continuously evaluated and improved, as well as 
potential risks can be identified and addressed before 
they escalate into more serious incidents. 

One of the limitations of the current study is that the 
structure and the conditional probabilities of the 
developed BN were derived based on the data and 
information available in the literature. Future studies can 
use historical data, expert knowledge, or a combination 
of these two to create a more accurate BN. Further 
research can also explore the use of additional sensors to 
provide a more comprehensive understanding of the 
framework and generate more accurate results. 
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